

Reg. No.: All the second secon

Name :

Eighth Semester B.Tech. Degree Examination, April 2015 (2008 Scheme) 08.825 (Elective – V) : MICROWAVE DEVICES AND CIRCUITS (T)

Time: 3 Hours

Max. Marks: 100

Instruction: Provide Smith charts to students on their request.

PART-A

Answer all questions.

1. Find the Z parameters of the T-Network given below

- Find the S-matrix of an inductor whose insertion loss is 0.3 dB and isolation 40 dB. Assume that points are well matched.
- 3. Explain the theory of small reflections.
- An n-type Ga As diode has the parameters.
 Electron drift velocity, V_d = 2.5 × 10⁵ m/s;

Negative electron mobility, $|\mu_n| = 0.015 \text{ m}^2/\text{V.S.}$

Relative dielectric constant, $\varepsilon_r = 13.1$.

Determine the criterion for classifying modes of operation.

5. List the applications of IMPATT and TRAPATT diodes.

6. The S parameters for the HP HFET - 102 Ga As FET at 2 GHz with a bias voltage V_{gs} = 0 are given as (z_0 = 50 Ω)

$$S_{11} = 0.894 < -60.6^{\circ}; S_{21} = 3.122 < 123.6^{\circ}$$

$$S_{12} = 0.020 < 62.4^{\circ}$$
; $S_{22} = 0.781 < -27.6^{\circ}$

Determine the stability of transistor using K- Δ test and μ -test.

- 7. Find the width for a $50\,\Omega$ copper stripline conductor with b = 0.32 cm and ϵ_r = 2.20. If the dielectric loss tangent is 0.001 and operating frequency 10 GHz. Calculate attenuation in dB/ λ . Assume a conductor thickness of t = 0.01 mm.
- 8. Differentiate phase and group velocity.
- 9. Show that a 3 port circulator can function as an isolator.
- 10. Write note on PIN diode switches.

(10×4=40 Marks)

PART-B

Answer any 2 questions from each Module.

Module-I

- 11. a) Consider a rectangular waveguide with a = 2.286 cm and b = 1.016 cm air filled for z < 0 and Rexolite filled for (ε_r = 2.54) z > 0. If operating frequency is 10 GHz. Use an equivalent transmission line model to compute reflection coefficient of a TE₁₀ wave incident on the interface from z < 0.
 - b) Design a single section quarter wave matching transformer to match a $10\,\Omega$ load to a $50\,\Omega$ line at f_o = 3 GHz. Determine the percent bandwidth for which the SWR < 1.5.
- 12. Design a double stub tuner to match a load $Z_L = 60 j$ 80 Ω to a 50 Ω line. The stubs are to be open circuited stubs and are spaced $\lambda/8$ apart. Assuming that this load consists of a series resistor and capacitor and that match frequency is 2 GHz.
- Explain the principle of operation of MESFET. Draw the equivalent circuit of MESFET.

10

10

5

5

Module - II

14. Explain the different modes of Gunn diode in detail based on the product of doping and length (n₀L) 10

15. A microwave transistor has the following S parameters at 10 GHz with $50\,\Omega$ reference impedance.

$$S_{11} = 0.45 < 150^{\circ}; S_{12} = 0.01 < -10^{\circ}; S_{21} = 2.05 < 10^{\circ}$$

 $S_{22} = 0.40 < -150^{\circ}$. The source impedance is $Z_S = 20 \Omega$ and load impedance is $Z_L = 30\,\Omega$. Compute power gain, available gain and the transducer power gain.

10

10

16. Design an amplifier for a maximum gain at 4 GHz using single stub matching sections. The GaAs has the S parameters ($Z_0 = 50 \Omega$).

fGHz	S ₁₁	S ₂₁	S ₁₂	S ₂₂	ORIAL O
3.0	0.80 < -89°	2.86 < 99°	0.03 < 56°	0.76 < -41%	TRIVANDRO
4.0	S ₁₁ 0.80 < -89° 0.72 < -116°	2.60 < 76°	0.03 < 57°	0.73 < - 54	NHOR - KANNANIN
5.0	0.66 < - 142°	2.39 < 54°	0.03 < 62°	0.72 < -68°	TOTAL MARKET

Module - III

- 17. Explain in detail coupled stripline theory include even and odd mode analysis. 10
- 18. a) Design a low pass composite filter with a cut off frequency of 2 MHz and impedance of 75Ω . Place the infinite attenuation pole at 2.05 MHz.
 - b) Write note on attenuators. 3
- 19. Write notes on microwave integrated circuits and hybrid microwave integrated circuits. 10